Remote transfer of ultrastable frequency references via fiber networks.

نویسندگان

  • Seth M Foreman
  • Kevin W Holman
  • Darren D Hudson
  • David J Jones
  • Jun Ye
چکیده

Three distinct techniques exist for distributing an ultrastable frequency reference over optical fibers. For the distribution of a microwave frequency reference, an amplitude-modulated continuous wave (cw) laser can be used. Over kilometer-scale lengths this approach provides an instability at 1 s of approximately 3 x 10(-14) without stabilization of the fiber-induced noise and approximately 1 x 10(-14) with active noise cancellation. An optical frequency reference can be transferred by directly transmitting a stabilized cw laser over fiber and then disseminated to other optical and microwave regions using an optical frequency comb. This provides an instability at 1 s of 2 x 10(-14) without active noise cancellation and 3 x 10(-15) with active noise cancellation [Recent results reduce the instability at 1 s to 6 x 10(-18).] Finally, microwave and optical frequency references can be simultaneously transmitted using an optical frequency comb, and we expect the optical transfer to be similar in performance to the cw optical frequency transfer. The instability at 1 s for transfer of a microwave frequency reference with the comb is approximately 3 x 10(-14) without active noise cancellation and <7 x 10(-15) with active stabilization. The comb can also distribute a microwave frequency reference with root-mean-square timing jitter below 16 fs integrated over the Nyquist bandwidth of the pulse train (approximately 50 MHz) when high-bandwidth active noise cancellation is employed, which is important for remote synchronization applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10{-17}.

The phase coherence of an ultrastable optical frequency reference is fully maintained over actively stabilized fiber networks of lengths exceeding 30 km. For a 7-km link installed in an urban environment, the transfer instability is 6 x 10{-18} at 1 s. The excess phase noise of 0.15 rad, integrated from 8 mHz to 25 MHz, yields a total timing jitter of 0.085 fs. A 32-km link achieves similar per...

متن کامل

Optical injection locking-based amplification in phase-coherent transfer of optical frequencies.

We demonstrate the use of an optical injection phase locked loop (OIPLL) as a regenerative amplifier for optical frequency transfer applications. The optical injection locking provides high gain within a narrow bandwidth (<100  MHz) and is capable of preserving the fractional frequency stability of the incoming carrier to better than 10(-18) at 1000 s. The OIPLL was tested in the field as a mid...

متن کامل

0.26-Hz-linewidth ultrastable lasers at 1557 nm

Narrow-linewidth ultrastable lasers at 1.5 μm are essential in many applications such as coherent transfer of light through fiber and precision spectroscopy. Those applications all rely on the ultimate performance of the lasers. Here we demonstrate two ultrastable lasers at 1557 nm with a most probable linewidth of 0.26 Hz by independently frequency-stabilizing to the resonance of 10-cm-long ul...

متن کامل

Coherence transfer of subhertz-linewidth laser light via an optical fiber noise compensated by remote users.

We present a technique for the coherence transfer of laser light through a fiber link, where the optical phase noise induced by environmental perturbation via the fiber link is compensated by remote users. When compensating the fiber noise by remote users, the time base at the remote site independent from that at the local site does not destroy the performance of the fiber output light. Using t...

متن کامل

Long-distance remote characterization of ultrastable lasers via commercial telecommunication fiber network

A. Pape, O. Terra, J. Friebe, M. Riedmann, T. Wübbena, E.M. Rasel, K. Predehl , B. Lipphardt, H. Schnatz, and G. Grosche Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany ∗Corres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 78 2  شماره 

صفحات  -

تاریخ انتشار 2007